
 1

ABSTRACT

Delta-Bar-Delta (DBD) [7] is an alternative to Back-
propagation, which is sometimes more efficient, although
it can be more disposed to stick in local minima than
Backpropagation. This paper presents the enhanced
version of delta-bar-delta (EVDBD) through applying the
Delta-Bar-Delta on Optical Backpropagation OBP [10,11
and 13]to adapt its weights rather than standard
Backpropagation BP [22] .The feasibility of the proposed
algorithm is shown through experiments on a three
training problems: Xor, encoder, and optical character
recognition with different architectures. A comparative
study has been done to solve these problems by using
different algorithms, and the performance of the EVDBD
is shown.

KEY WORDS
Neural Networks, Backpropagation, Delta-Bar-Delta,
Optical Backpropagation .

1. INTRODUCTION

The Backpropagation algorithm [22] is perhaps the most
widely used supervised training algorithm for multi-
layered feedforward neural networks [20, and 23].
However, in many cases, the standard Backpropagation
takes long time to converge [2,3,4, and 6]. The Delta-Bar-
Delta network utilizes the same architecture as a back-
propagation network. The difference of delta bar delta lies
in its unique algorithmic method of learning. Delta-Bar-
Delta was developed to improve the convergence rate of
standard feedforward, back-propagation networks.

A common approach to avoid slow convergence in the
flat directions and oscillations in the steep directions, as
well as to exploit the parallelism inherent by the BP
algorithm, consists of using different learning rates for
each direction in weight space [7, 15, and 21]. However,
attempts to find a proper learning rate for each weight
usually result in a trade-off between the convergence
speed and the stability of the training algorithm. For
example, the delta-bar-delta method [7] or the QuickProp
method [5] introduce additional highly problem

dependent heuristic coefficients to alleviate the stability
problem.

Delta-Bar-Delta algorithm uses the information derived
from previous weights to determine how large an update
can be made without diverging. This typically uses some
form of historical information about specific weight’s
gradient.

In order to speed up the training process, many researches
increase each weight update depending on the previous
weight update. This effectively increases the learning rate
[16]. In [21] the Incremental Delta-Bar-Delta IDBD
algorithm is developed for the learning of appropriate
biases based on previous learning experience.

The extended-delta-bar-delta (EDBD)[15] algorithm
applies heuristic adjustment of the momentum term in the
DBD-based networks. The momentum is a term, which is
added to the weight change and is proportional to the
previous weight change. This heuristic is designed to
reinforce positive learning trends and dampen the
oscillations.

This paper presents the enhanced version of Delta-Bar-
Delta with OBP. It can overcome some of the problems
associated with standard backpropagation and Delta-Bar-
Delta. The experimental results prove that speed of
convergence can be improved using EVDBD.

The rest of the paper is organized as follows: The Delta-
Bar-Delta is introduced in section 2. Section 3 presents
the proposed algorithm. Experimental results and
discussion are given in section 4. Section 5 concludes the
paper.

2. DELTA BAR DELTA

The Delta-Bar-Delta (DBD) attempts to increase the
speed of convergence by applying heuristics based upon
the previous values of the gradients for inferring the
curvature of the local error surface.
The delta bar delta paradigm uses a learning method
where each weight has its own self-adapting coefficient. It
also does not use the momentum factor of the back-

AN ENHANCED VERSION OF DELTA-BAR-DELTA ALGORITHM

Mohammed A. Otair
Department of Computer Information System
Jordan University of Science and Technology

Irbed, Jordan
Email Address: otair@just.edu.jo

Walid A. Salameh
Department of Computer Science-RSS

Princess Summaya University for Science and Technology
11941 Al-Jubaiha, Amman, Jordan
Email Address: walid@psut.edu.jo

 2

propagation networks [17]. The remaining operations of
the network, such as feedforward recall, are same to the
normal back-propagation networks [8, and 9]. Delta-Bar-
Delta is a heuristic approach in training neural networks,
because the past error values can be used to infer future
calculated error values. Delta-Bar-Delta implements four
heuristics regarding gradient decent:

• Every weight should have its own individual
learning rate.

• Every individual learning rate should adjust over
time.

• If the error derivative has the same sign for
several consecutive steps, then increase the
learning rate.

• When the sign changes alternatively over a
number of steps, then decrease the learning rate:
clearly the large rate causes oscillations.

2.1 Technical Details

Weights are updated using the same formula as in
Backpropagation, except that momentum is not used, and
each weight has its own time-dependent learning rate.

All Learning rates are initially set to the same starting
value; subsequently, they are adapted on each epoch using
the formula below.

The delta value for each neuron is calculated as:

ijij x*δ−=Δ (1)

Where δj is the error at a single output unit is defined as:

)xw('f)OY(j iij∑•−=δ (2)

Where Y is the desired output, O is the actual output, Wij
are the weights from hidden to the output units and Xi are
the input for each output unit.

The bar-delta value for each unit is calculated as:

)1n(*)n(*)1()n(ijijij −Δ+Δ−=Δ ββ (3)

)n(ijΔ is the derivative of the error surface, β is the
smoothing constant.

The learning rate of each weight is updated using:

 k)n(ij +η , If 0)n(*)1n(ijij >Δ−Δ (4.a)
=+Δ)1n(ijη)n(*)1(ijηγ− , If 0)n(*)1n(ijij <Δ−Δ (4.b)

)n(ijη , Otherwise (4.c)
Where η is the learning rate, γ is the exponential decay
factor and K is the linear increment factor.

3. ENHANCED VERSION OF DELTA-
BAR-DELTA (EVDBD)

An Enhanced version of Delta-Bar-Delta (EVDBD)
algorithm is an extension of the Delta-Bar-Delta
algorithm as a natural outgrowth from Jacob’s work[3],
EVDBD is the same as Delta-Bar-Delta which introduced
by Jacobs as outlined in section 2 except that the proposed
algorithm uses an Optical Backpropagation OBP rather
than BP network.

In [10,11,12,13, and 14], it has been proved that the OBP
algorithm improves the performance of the BP algorithm.
The convergence speed of the training process can be
improved significantly by OBP through adjusting the
error, which is transmitted backward from the output
layer to each unit in the hidden layer. So, if the Delta-Bar-
Delta applies on OBP, then the rate of convergence can be
improved with EVDBD algorithm.

Optical Backpropagation (OBP) applies a non-linear
function on the error from each output unit before
applying the backpropagation phase, using this formula:

)xw('f)
2)OY(e1(jNew iij∑•−+=δ (5)

, if (Y – O) > zero.

)xw('f)
2)OY(e1(jNew iij∑•−+−=δ (6)

, if (Y – O) < zero.
zerojNew =δ

 , if (Y – O) = zero. (7)
The Newδj will propagate backward to update the output-
layer weights and the hidden-layer weights. (i.e. The
deltas of the output layer change, but all other equations
of BP remain unchanged). This Newδj will minimize the
errors of each output unit, and the weights on certain units
change on large steps from their starting values.

4. EXPERIMENTAL EVALUATION

In this section, seven training algorithms are implemented
on a variety of training problems, which are:
Backpropagation (BP) [22], Backpropagation with
momentum (BPM) [22], QuickProp (QP) [5], Delta-Bar-
Delta (DBD) [7], Optical Backpropagation (OBP) [10] ,
Optical Backpropagation with momentum (OBPM) [13] ,
and Enhanced Version of Delta-Bar-Delta (EVDBD).
Most algorithms have been experimented the following
neural network problems:

 3

4.1 XOR problem

The implement of the EVDBD algorithm to solve the
XOR problem is very important because the XOR
problem requires hidden layers and many other difficult
problems involve an XOR as a subproblem.

The XOR problem will be solved using neural network
which consists of two input units, two hidden units, and
single output unit, with biases for hidden unit and the
output unit, without direct connection from input to the
output layers, (this network is labeled as 2-2-1). To train
this network all initial weights will start as shown in
figure 1 for all training processes.

FIGURE 1: Initial Weights for XOR (2-2-1) problem

In this experiment, the training process is continued until
reaching a mean square error (MSE) less than or equals to
0.001. Different learning rates were used ranged from (0.1
to 1).

In BPM and OBPM the value 0.5 is used for momentum
factor, while the DBD and EVDBD use the following
parameters (β=0.6, γ=0.001, k=0.001). In addition, in the
DBD and EVDBD algorithms there is no constant value
for the learning rate, instead the learning rate is initialized
with values for each training process as shown in the first
column in table 1, and then these learning rates values are
adapted through the training epochs. Table 1 shows the
results for each training processes using all algorithms in
term of number of epochs (this assumption will be
associated with all experiments).

TABLE 1: Solve XOR (2-2-1) problem using Seven
Algorithms

LR BP
BPM
0.5 QP DBD OBP EVDBD

OBPM
0.5

0.1 21304 13702 8022 981 1640 457 862
0.2 10339 6850 2995 956 911 450 463
0.3 6772 4566 2008 930 713 456 330
0.4 5018 3423 1492 905 656 472 263
0.5 3980 2737 1210 881 659 484 224
0.6 3295 2280 985 857 671 479 199
0.7 2810 1953 870 834 651 454 181

0.8 2448 1708 868 812 593 416 169
0.9 2169 1518 1025 791 521 373 160
1 1947 1365 990 770 443 326 153

Figure 2 represents the previous table. As you can see, the
OBPM (with momentum of 0.5) and EVDBD are faster
than the OBP. Then, comes the DBD with a close number
of epochs to the OBP.

According to the last three algorithms which took a larger
number of epochs, they are the QP, BPM and BP
respectively.

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

BP
BPM 0.5
QP
DBD
OBP
EVDBD
OBPM 0.5

FIGURE 2: Solve XOR (2-2-1) problem using Seven
Algorithms

4.2 Solve XOR problem (4 bits) using DBD , and
EVDBD

The second problem to be described is the XOR problem
with 4-bits (4-16-1). The network consists of 4 units in
the input layer, and only 1 unit in the output layer, and a
hidden layer of 16 units, respectively.

Table 2 represents the training process for this problem
using DBD, and EVDBD, with different initial values for
learning rate between 0.1 and 0.9.

TABLE 2: Solve XOR problem (4 bits) using EVDBD
and DBD

η DBD 4-bit EVDBD 4-bit
0.1 128 56
0.2 120 45
0.3 110 33
0.4 103 27
0.5 98 24
0.6 83 16
0.7 75 13
0.8 66 9
0.9 64 8

As seen in the previous table, the EVDBD algorithm
needs less number of epochs in comparing with DBD
especially when using a large value for learning rate.

 4

4.3 Encoder Problem

Encoder problem is a feed-forward neural network with N
input units, M hidden unites, and N output units (i.e. N-M-
N networks). Training these networks can be very
challenging when M<N [18]. They are trained so their
output values (approximately) match their input values on
a training set.

Peter Anderson [1] proposed a new approach(called
Training Wheel) to train encoder feed-forward neural
networks and apply it on many classes of problems such
as N-4-N. Anderson's approach is to initially train the
network with a related, relatively easy-to-learn problem,
and then gradually replace the training set with harder
problems, until the network learns the problem he
originally intended to solve. In several cases, this method
allowed us to train networks that otherwise fail to train.

4.3.1 16-M-16 Encoder Problem

A 16-M-16 problem is to compress a signal of 16 values
into one of M values. This network is useful for feature
extraction. Each network consists of 16 units in both the
input layer and output layer, and a hidden layer of M (6 to
11) units. In this experiment, the input patterns are equal
to the target patterns such as the following sample pattern
formats: Note, the size of gab between two ones ≥6 (as
shown in table 3).

TABLE 3: Four of the forty training patterns for 16-M-16
network

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

The following table shows the training process of the
network 16-M-16, various values of M have been applied
from 6 to 11. It is clear that the more number of units in
the hidden layer, causes the network will be able to
escape from local minima, so acceleration the training
process.

TABLE 4: Solve 16-M-16 Encoder using EVDBD with
Training Wheel's technique

 Μ
η 11 10 9 8 7 6
0.1 124 142 180 ∞ 210 327
0.2 105 122 ∞ 168 202 226
0.3 93 110 ∞ 120 95 121
0.4 77 90 98 96 122 ∞
0.5 64 ∞ 83 95 ∞ 152
0.6 61 61 62 72 94 ∞
0.7 57 52 54 ∞ 84 210
0.8 53 51 57 56 74 95
0.9 61 63 55 70 72 ∞

From the previous table it can notice that the best values
achieved when a hidden layer size equals to 11. Meaning
that the large hidden layer size helps to generalize and
accelerate the training process.

4.3.2 M-4-M Encoder Problem (Double dots)

This experiment has tested M-4-M network to compress a
signal of M vales into 4 values where M=7, 9, 10, 16, and
28 [1]. Each network consists of M units in both the input
layer and output layer, and a hidden layer of 4 units. In
this experiment, the input patterns are equal to the target
patterns such as the following sample pattern formats:

TABLE 5: Five of the ten training patterns for 10-4-10
network where gab size = 3 and block size =2

This experiment has examined M-4-M through Training
Wheel's technique. There are more than one architecture
were used. Table 6 shows that there are many cases have
been tested (for example, in the third column the
architecture in this experiment is 9-4-9, the gap between
each two ones is 2 and the size of each block is 1).

TABLE 6: Solve M-4-M Encoder using EVDBD with
Training Wheel's technique

N 7 9 10 16 28

Gap 1 2 3 5 10

 Block Size
 η 1 1 2 1 3 2 1 4

0.1 56 180 44 110 96 1123 154 309

0.2 54 182 33 87 67 1072 112 216

0.3 49 112 21 81 63 682 93 203

0.4 42 101 24 73 61 556 112 112

0.5 31 95 27 66 54 442 105 105

0.6 42 94 25 54 56 413 108 84

0.7 43 84 27 71 54 277 106 82

0.8 45 105 33 78 64 457 124 73

0.9 57 121 38 90 91 545 170 85

From the previous table, it can noticeable that the
minimum number of epochs was when the architecture

 5

10-4-10 and the value of the gap =3 and the block size is
2 with learning rate equals to 0.3. In addition, the number
of epochs with all learning rates in this case is less than all
other cases.

In addition, it can be realized that using a medium size of
the hidden layer helps in accelerating the training process.
Meaning that using a large size of the hidden layer may
slow down the training process or may leads the network
to overfitting or even falling into local minima [20].

To compare DBD and EVDBD, the best results using
EVDBD have been taken from table 6, while the best
results for the same experiment using DBD taken from
[14]. Take into consideration that using the same
parameters with the two algorithms. Table 7 shows this
comparison.

TABLE 7: Comparing between EVDBD and DBD to
Solve M-4-M Encoder Problem with Training Wheel's
technique

M-4-M Gap Block DBD EVDBD
7 1 1 366 33
9 2 1 359 85

2 450 22
10 3 1 465 56

3 331 56
2 363 297

16 5 1 464 96
28 10 4 12859 76

It can see from the previous table that there are great
differences between EVDBD and DBD, which surely
approaches towards the EVDBD with respect to the
convergence time. In addition to that, the ability of the
EVDBD to deal with large size of gap and block (e.g.
using a gap=10, block =4 with the network architecture of
28-4-28).

4.4. Optical Character Recognition (OCR) Problem

In this experiment, five neural networks are developed
and trained to recognize handwritten characters. Two
algorithms were tested: DBD and EVDBD.

4.4.1 48-8-4 Neural Network to Solve OCR
Problem

4.4.1.1 Methodology

To study the performance of the EVDBD and DBD, the
neural networks were applied on handwritten English
character recognition. Binary images of the characters
were represented with bipolar values [-1, 1], and given to
the input layer[19]. As shown in figure 3, ten images are
used in the training set an 8X6 binary image for the neural
network with 48-8-4 architecture.

FIGURE 3: The Training set of OCR (48-8-4 neural
Network)

Binary vectors of size 4 represent the output values.(e.g.
character A is represented with zero (0000), while J is
represented with 9 (1001)). Each character image is
mapped to its corresponding binary code. To train the
network for larger set of characters a large output vector
can be used (as will be in sections 4.4.5.2 and
4.4.5.3).The size of the hidden layer for this network is 8
producing 48-8-4 network. Small values for the learning
rates were used to avoid local minima, the value ranges
from 0.1 to 0.4. In addition, several sets with different
random initial weights between –0.5 to +0.5 were used in
each training process with various values for the learning
rate. The training processes were terminated when the
MSE (Mean Square Error) is less than or equal to
0.0001(for all the following experiments).

4.4.1.2 Solve OCR problem (48-8-4) Using DBD and
EVDBD:

Table 8 shows training summary for the 48-8-4 neural
network using the. 20 experiment runs of each learning
rate were made with random initial weights setting over
the interval [-0.5, 0.5].

TABLE 8: Solve OCR problem (48-8-4) Using DBD and
EVDBD

η Algo. Max Min

DBD 6900 5274
0.1 EVDBD 423 380

DBD 7710 2533
0.2 EVDBD 327 195

DBD 4028 1706
0.3 EVDBD 355 145

From the previous table, it can see the great difference
between the two algorithms which greatly approaches
towards EVDBD. Through the EVDBD a minimum
number of the epochs reached to 145 while in DBD was
1706 and that was with learning rate of 0.3.

4.4.2 96-16-4 Neural Network to Solve OCR Problem

In this experiment a larger network has been used by
using a larger size for each image which each one of them
represents one of the capital letters from A-J. Each
character represents with 12 rows and 8 columns which
means that the number of pixels which represent each
character is 96; this number represents the size of the

 6

input layer. 16 units were used to the size of the hidden
layer, and the size of the output layer is 4 for all
experiments.

In this experiment, the network was trained several times
through several learning rates as in table 9. The aim of
this test is to compare the algorithms EVDBD and DBD
through a network that has a larger architecture from
those that were used in the previous section.

TABLE 9: Solve OCR problem (96-16-4) Using DBD
and EVDBD

η DBD EVDBD
0.1 83 472
0.2 31 279
0.3 25 144
0.4 23 191

From the previous table, it can see that EVDBD is still
keeping its qualities in speeding up the training process
especially with using a larger learning rate. The focus
should always be through the number of epochs that gets
from each algorithm.

4.4.3 Solve OCR problem (400-L-4) Using DBD and
EVDBD

In this test, the architecture of the network was 400-L-4,
where L=20, 40 and 60. The aim of this network is to
recognize the characters from A-J. Each letter have been
represented by 20 rows and 20 columns which makes the
input layer size equals to 400. The aim of this test is to
know the effect of the size of the input layer on the
performance of the proposed algorithm EVDBD, and the
effect of maximizing the hidden layer size on speeding up
training using this algorithm. Note the learning rate that is
used in the remaining experiments is equals to 0.1. The
following table shows the results of this test .

TABLE 10: Solve OCR problem (400-L-4) Using DBD
and EVDBD

 Algo.
HLS
 DBD EVDBD

20 139 75
40 111 51
60 107 49

HLS: refers to the Hidden Layer size.

It is clear that the minimum number of epochs was when
the size of hidden layer equals to 60 especially when use
larger learning rate which indicates that maximizing the
size of the hidden layer and the learning rate helps in
speeding up the training process. The size of the hidden
layer may be maximizing just to a certain size, that is
because the network could not generalize(e.g. when used
larger than 60 units for the hidden layer size).

4.4.4. Solve OCR problem (900-L-4) Using DBD and
EVDBD

This network is like other networks were built to
recognize the characters from A-J. But here, each
character have been represented by 30 rows and 30
columns, which makes the size of the input layer equals to
900 units. Various values for the size of hidden layer have
been used such as 25, 50, 75 and 100 units. The training
process for this network has given in table 11:

TABLE 11: Solve OCR problem (900-L-4) Using DBD
and EVDBD

 Algo.
HLS

DBD EVDBD
25 112 81
50 67 45
75 53 30

100 55 31

This experiment has also assured that EVDBD has the
ability to generalize even with maximizing the input layer
size. From table 11 it can notice that the hidden layer size
maximized until reaches to a point where more
maximization has no positive effect (may be overfitting).
It even might expose the network to a prevention from
generalize or memorization (for example, it can see from
the previous table that the size of hidden layer equals to
75 and 100 leads to the same performance
approximately).

4.4.5. Solve OCR Problem (10000-L-M neural
network)

From the previous experiments, different sizes have been
examined for input layer, but in this test the size of the
input layer has been maximized to be compatible with
real problems. Each character has been represented with
100 rows and 100 columns, so that the size of the input
layer becomes very large which is 10000 units.

4.4.5.1 Solve OCR problem (10000-L-4) Using DBD
and EVDBD:

This network has been constructed to recognize the
characters from A-J with different sizes of hidden layer
40, 50, and 60 units with many learning rates. The
following table represents the results of this network:

TABLE 12: Solve OCR problem (10000-L-4) Using DBD
and EVDBD

 Algo.
HLS DBD EVDBD

40 197 61
50 164 50
60 146 37

 7

The row that represents the hidden layer size equals to 60
is the best row but it should say that using hidden layer
size greater than 60 will prevent the network from
generalization. So using a medium hidden layer size is
better for generalization and acceleration of the training
process.

4.4.5.2 Solve OCR problem (10000-L-5) Using DBD
and EVDBD:

The new thing about this experiment is maximizing the
output layer and that is to help this network to recognize
the characters from A-Z (for example, the target output
for the character A is 00000, and for Z is 11001). The
number of units (L) in the hidden layer was 30, 40, 50, 60,
70 and 80 units. The following table summarizes the
results of this experiment. The number of epochs that
have been put in the table gave a better result from the
five trails that have been got with each hidden layer.

TABLE 13: Solve OCR problem (10000-L-5) Using DBD
and EVDBD

 Algo.
HLS DBD EVDBD

30 150 73
40 114 71
50 83 54
60 80 37
70 58 31
80 54 29

From the previous, it can notice that EVDBD could solve
this problem too and through the different sizes of hidden
layer. For this test and the previous tests using hidden
layer size of 60 and 70 is better because it is close to the
results of hidden layer size equals to 80, but it reduces
from falling into local minima or overfitting.

4.4.5.3 Solve OCR problem (10000-L-6) Using DBD
and EVDBD:

The aim of this network is recognizing a large number of
symbols. The size of the output layer has been maximized
to 6. So this network has the ability to recognize the
capital letters from A-Z, small letters from a-z beside the
digits from 0-9. According to the size of the hidden layer
it was 80, 90 and 100 units as in the following table:

TABLE 14: Solve OCR problem (10000-L-6) Using DBD
and EVDBD

 Algo.
HLS DBD EVDBD

80 72 61
90 50 52
100 31 25

From the results of the previous table, the new result is
that when the size of the training set (i.e. number of

symbols) increases it becomes very important to use a
larger size of the hidden layer. In addition, the required
number of epochs becomes less.

4. CONCLUSION

This paper introduced a new algorithm EVDBD which has
been proposed for the training of multilayer neural
networks, the EVDBD is an enhanced version of the
Delta-Bar-Delta algorithm. The study shows that EVDBD
is beneficial in speeding up the training process. The
experiments results confirmed these observations.

The experimental results show that an EVDBD has the
same features of the DBD except that the EVDBD
minimizes the time of the training process. In addition,
the result of this paper can be generalized to be applied on
the multi-layer neural networks.

FUTURE WORK

Use the adaptive momentum strategies should be
examined and their results should be compared to those
produced by their counterparts.

References
[1] Anderson G. Peter, Training Wheels for Encoder

Networks, Proc. of the Int. ICSC Symposium on
Intelligent Industrial Automation(IIA 96) and Soft
Computing (SOCO 96), Reading, U.K. , Academic
Press.1996.

[2] Anthony, M., and Bartlett, P.L., Neural Network
Learning: Theoretical Foundations, Cambridge:
Cambridge University Press, ISBN 0-521-57353-X,
1999.

[3] Carling, A., Alison, Introducing Neural Networks,
1992, 133-154.

[4] Carsten Peterson, “Artificial Neural Networks”,
Cambridge University Press, 2004

[5] Fahlman, S. E., Faster-learning variations on
Backpropagation: an empirical study. Proceedings of
the 1988 Connectionist Models Summer School, 38-
51.

[6] Freeman, J. A., Skapura, D. M., Backpropagation.
Neural Networks Algorithm Applications and
Programming Techniques, 1992, 89-125.

[7] Jacobs, R. A., Increased rates of convergence through
learning rate adaptation, Neural Networks,
1988,1,169-180

[8] Martin T. Hagan, Howard B. Demuth, Neural
Networks Design, 1996, 11.1-12.52

[9] Maureen Caudill, and Charles Butler, Understanding
Neural Networks: Computer Explorations, Volume
1,1993,.155-218

 8

[10] M.A. Otair and W.A. Salameh, An Improved Back-
Propagation Neural Networks using a Modified Non-
linear Function, Proceedings of the IASTED
International Conference, 2004,442-447

[11] M.A. Otair and W.A. Salameh,” Speeding Up
Backpropagation Neural Networks”, under
preparation, 2004, Accepted for publication in the
Journal of Issues in Informing Science and
Information Technology, 2005.

[12] M.A. Otair and W.A. Salameh, Online Handwritten
Character Recognition Using An Optical
Backpropagation Neural Networks, Proceedings of
The 2004 International Research Conference on
Innovations in Information Technology, 2004, 334-
341.

[13] M.A. Otair and W.A. Salameh, Optical Back-
Propagation Neural Networks with a Momentum
Factor –A Case Study-, WSEAS Transactions on
Circuits and Systems, Issue 9, Volume 3, 2004, p.
2073-2078.

[14] M.A. Otair and W.A. Salameh, Comparative Study
between Different versions of the Backpropagation
and Optical Backpropagation, under review, 2005.

[15] Minai, A.A., Williams, R.D., Acceleration of back-
propagation through learning rate momentum
adaptation, Proceedings of the International Joint
Conference on Neural Networks, 1990, 1676-1679.

[16] M. Hagiwara, “Theoretical derivation of momentum
term in back-propagation” , Int. Joint Conf. On
Neural Networks, 682-686 ,1992

[17] Negnevitsky, M, Artificial Intelligence: A Guide to
Intelligent Systems, Boston: Addison Wesley, 2002.

[18] Paul Bakker , Steven Philps, Janet Wiles, The N-2-N
encoder: a matter of representation , Proc. of The
Int. Conf. On Artificial Neural Networks,
Amsterdam, The Netherlands, 1993.

[19] R. Plamondon, D.P. Lopresti, L.R.B. Schomaker, R.
Shrihari, Online Handwriting recognition, Wiley
Encyclopedia of Electrical and Electronics
Engineering, John G. Webster (editor), vol. 15, John
Wiley & Sons, 1999, 123-146.

[20] Robert Callan, The Essence of Neural Networks,
Southmpton Institute, 1999, 33-52.

[21] R.S. Sutton , Adapting bias by gradient descent :
Incremental Version of Delta-Bar-Delta”, Proc.
National Conf. On AI , MIT Press ,171-176 ,1992

[22] Rumelhart, D. E., Hinton, G. E., and Williams, R. J.,
Learning internal representations by error
propagation, In D. E. Rumelhart and J. L. McClelland
(eds) Parallel Distributed Processing, 1986, 318-
362.

[23] Simon Hakin , Neural Networks A Comprehensive
Foundation ,2nd Edition , 1999 ,161-184

