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ABSTRACT 
 
Delta-Bar-Delta (DBD) [7] is an alternative to Back-
propagation, which is sometimes more efficient, although 
it can be more disposed to stick in local minima than 
Backpropagation. This paper presents the enhanced 
version of delta-bar-delta (EVDBD) through applying the 
Delta-Bar-Delta on Optical Backpropagation OBP [10,11 
and 13]to adapt its weights rather than standard 
Backpropagation BP [22] .The feasibility of the proposed 
algorithm is shown through experiments on a three 
training problems: Xor, encoder, and optical character 
recognition with different architectures. A comparative 
study has been done to solve these problems by using 
different algorithms, and the performance of the EVDBD 
is shown. 
 
KEY WORDS 
Neural Networks, Backpropagation, Delta-Bar-Delta, 
Optical Backpropagation . 
 
1. INTRODUCTION 
 
The Backpropagation algorithm [22] is perhaps the most 
widely used supervised training algorithm for multi-
layered feedforward neural networks [20, and 23]. 
However, in many cases, the standard Backpropagation 
takes long time to converge [2,3,4, and 6]. The Delta-Bar-
Delta network utilizes the same architecture as a back-
propagation network. The difference of delta bar delta lies 
in its unique algorithmic method of learning. Delta-Bar-
Delta was developed to improve the convergence rate of 
standard feedforward, back-propagation networks.  
 
A common approach to avoid slow convergence in the 
flat directions and oscillations in the steep directions, as 
well as to exploit the parallelism inherent by the BP 
algorithm, consists of using different learning rates for 
each direction in weight space [7, 15, and 21]. However, 
attempts to find a proper learning rate for each weight 
usually result in a trade-off between the convergence 
speed and the stability of the training algorithm. For 
example, the delta-bar-delta method [7] or the QuickProp 
method [5] introduce additional highly problem                                                                                                                                

dependent heuristic coefficients to alleviate the stability 
problem. 
 
Delta-Bar-Delta algorithm uses the information derived 
from previous weights to determine how large an update 
can be made without diverging. This typically uses some 
form of historical information about specific weight’s 
gradient.  
 
In order to speed up the training process, many researches 
increase each weight update depending on the previous 
weight update. This effectively increases the learning rate 
[16]. In [21] the Incremental Delta-Bar-Delta IDBD 
algorithm is developed for the learning of appropriate 
biases based on previous learning experience. 
 
The extended-delta-bar-delta (EDBD)[15] algorithm 
applies heuristic adjustment of the momentum term in the 
DBD-based networks. The momentum is a term, which is 
added to the weight change and is proportional to the 
previous weight change. This heuristic is designed to 
reinforce positive learning trends and dampen the 
oscillations. 
 
This paper presents the enhanced version of Delta-Bar-
Delta with OBP. It can overcome some of the problems 
associated with standard backpropagation and Delta-Bar-
Delta. The experimental results prove that speed of 
convergence can be improved using EVDBD. 
 
The rest of the paper is organized as follows: The Delta-
Bar-Delta is introduced in section 2. Section 3 presents 
the proposed algorithm. Experimental results and 
discussion are given in section 4. Section 5 concludes the 
paper. 
 
2. DELTA BAR DELTA 
 
The Delta-Bar-Delta (DBD) attempts to increase the 
speed of convergence by applying heuristics based upon 
the previous values of the gradients for inferring the 
curvature of the local error surface.  
The delta bar delta paradigm uses a learning method 
where each weight has its own self-adapting coefficient. It 
also does not use the momentum factor of the back-
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propagation networks [17]. The remaining operations of 
the network, such as feedforward recall, are same to the 
normal back-propagation networks [8, and 9]. Delta-Bar-
Delta is a heuristic approach in training neural networks, 
because the past error values can be used to infer future 
calculated error values. Delta-Bar-Delta implements four 
heuristics regarding gradient decent: 

• Every weight should have its own individual 
learning rate. 

• Every individual learning rate should adjust over 
time. 

• If the error derivative has the same sign for 
several consecutive steps, then increase the 
learning rate. 

• When the sign changes alternatively over a 
number of steps, then decrease the learning rate: 
clearly the large rate causes oscillations. 

 
2.1 Technical Details 
 
Weights are updated using the same formula as in 
Backpropagation, except that momentum is not used, and 
each weight has its own time-dependent learning rate. 
 
All Learning rates are initially set to the same starting 
value; subsequently, they are adapted on each epoch using 
the formula below. 
 
The delta value for each neuron is calculated as: 

ijij x*δ−=Δ      (1) 

Where δj is the error at a single output unit is defined as: 

)xw('f)OY(j iij∑•−=δ     (2) 

Where Y is the desired output, O is the actual output, Wij 
are the weights from hidden to the output units and Xi are 
the input for each output unit. 
 
The bar-delta value for each unit is calculated as: 

)1n(*)n(*)1()n( ijijij −Δ+Δ−=Δ ββ   (3) 

)n(ijΔ  is the derivative of the error surface, β is the 
smoothing constant. 
 
The learning rate of each weight is updated using: 
 

    k)n(ij +η      , If 0)n(*)1n( ijij >Δ−Δ      (4.a) 
=+Δ )1n(ijη   )n(*)1( ijηγ−  , If 0)n(*)1n( ijij <Δ−Δ    (4.b) 

    )n(ijη    , Otherwise              (4.c) 
Where η is the learning rate, γ is the exponential decay 
factor and K is the linear increment factor. 
 

3. ENHANCED VERSION OF DELTA-
BAR-DELTA (EVDBD) 
 
An Enhanced version of Delta-Bar-Delta (EVDBD) 
algorithm is an extension of the Delta-Bar-Delta 
algorithm as a natural outgrowth from Jacob’s work[3], 
EVDBD is the same as Delta-Bar-Delta which introduced 
by Jacobs as outlined in section 2 except that the proposed 
algorithm uses an Optical Backpropagation OBP rather 
than BP network. 
 
In [10,11,12,13, and 14], it has been proved that the OBP 
algorithm improves the performance of the BP algorithm. 
The convergence speed of the training process can be 
improved significantly by OBP through adjusting the 
error, which is transmitted backward from the output 
layer to each unit in the hidden layer. So, if the Delta-Bar-
Delta applies on OBP, then the rate of convergence can be 
improved with EVDBD algorithm. 
 
Optical Backpropagation (OBP) applies a non-linear 
function on the error from each output unit before 
applying the backpropagation phase, using this formula: 

)xw('f)
2)OY(e1(jNew iij∑•−+=δ       (5)     

                  
, if (Y – O) > zero.      

)xw('f)
2)OY(e1(jNew iij∑•−+−=δ                          (6) 

, if (Y – O) < zero.      
zerojNew =δ  

   , if (Y – O) = zero.              (7) 
The Newδj will propagate backward to update the output-
layer weights and the hidden-layer weights. (i.e. The 
deltas of the output layer change, but all other equations 
of BP remain unchanged). This Newδj will minimize the 
errors of each output unit, and the weights on certain units 
change on large steps from their starting values.  
 
4. EXPERIMENTAL EVALUATION 
 

In this section, seven training algorithms are implemented 
on a variety of training problems, which are: 
Backpropagation (BP) [22], Backpropagation with 
momentum (BPM) [22], QuickProp (QP) [5], Delta-Bar-
Delta (DBD) [7], Optical Backpropagation (OBP) [10] , 
Optical Backpropagation  with momentum (OBPM) [13] , 
and  Enhanced Version of Delta-Bar-Delta (EVDBD). 
Most algorithms have been experimented the following 
neural network problems: 
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4.1 XOR problem 

The implement of the EVDBD algorithm to solve the 
XOR problem is very important because the XOR 
problem requires hidden layers and many other difficult 
problems involve an XOR as a subproblem.  

The XOR problem will be solved using neural network 
which consists of two input units, two hidden units, and 
single output unit, with biases for hidden unit and the 
output unit, without direct connection from input to the 
output layers, (this network is labeled as 2-2-1). To train 
this network all initial weights will start as shown in 
figure 1 for all training processes. 

 
FIGURE 1: Initial Weights for XOR (2-2-1) problem  

In this experiment, the training process is continued until 
reaching a mean square error (MSE) less than or equals to 
0.001. Different learning rates were used ranged from (0.1 
to 1).  
 
In BPM and OBPM the value 0.5 is used for momentum 
factor, while the DBD and EVDBD use the following 
parameters (β=0.6, γ=0.001, k=0.001). In addition, in the 
DBD and EVDBD algorithms there is no constant value 
for the learning rate, instead the learning rate is initialized 
with values for each training process as shown in the first 
column in table 1, and then these learning rates values are 
adapted through the training epochs. Table 1 shows the 
results for each training processes using all algorithms in 
term of number of epochs (this assumption will be 
associated with all experiments). 

TABLE 1: Solve XOR (2-2-1) problem using Seven 
Algorithms 

LR BP 
BPM 
0.5 QP DBD OBP EVDBD 

OBPM 
0.5 

0.1 21304 13702 8022 981 1640 457 862 
0.2 10339 6850 2995 956 911 450 463 
0.3 6772 4566 2008 930 713 456 330 
0.4 5018 3423 1492 905 656 472 263 
0.5 3980 2737 1210 881 659 484 224 
0.6 3295 2280 985 857 671 479 199 
0.7 2810 1953 870 834 651 454 181 

0.8 2448 1708 868 812 593 416 169 
0.9 2169 1518 1025 791 521 373 160 
1 1947 1365 990 770 443 326 153 

Figure 2 represents the previous table. As you can see, the 
OBPM (with momentum of 0.5) and EVDBD are faster 
than the OBP. Then, comes the DBD with a close number 
of epochs to the OBP. 

According to the last three algorithms which took a larger 
number of epochs, they are the QP, BPM and BP 
respectively.  
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FIGURE 2: Solve XOR (2-2-1) problem using Seven 
Algorithms 

4.2  Solve XOR problem (4 bits) using DBD , and 
EVDBD 

The second problem to be described is the XOR problem 
with 4-bits (4-16-1). The network consists of 4 units in 
the input layer, and only 1 unit in the output layer, and a 
hidden layer of 16 units, respectively.  

Table 2 represents the training process for this problem 
using DBD, and EVDBD, with different initial values for 
learning rate between 0.1 and 0.9. 

TABLE 2: Solve XOR problem (4 bits) using EVDBD 
and DBD 

η DBD   4-bit EVDBD  4-bit 
0.1 128 56 
0.2 120 45 
0.3 110 33 
0.4 103 27 
0.5 98 24 
0.6 83 16 
0.7 75 13 
0.8 66 9 
0.9 64 8 

As seen in the previous table, the EVDBD algorithm 
needs less number of epochs in comparing with DBD 
especially when using a large value for learning rate.  
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4.3    Encoder Problem 

Encoder problem is a feed-forward neural network with N 
input units, M hidden unites, and N output units (i.e. N-M-
N networks). Training these networks can be very 
challenging when M<N [18]. They are trained so their 
output values (approximately) match their input values on 
a training set.  

Peter Anderson [1] proposed a new approach(called 
Training Wheel) to train encoder feed-forward neural 
networks and apply it on many classes of problems such 
as N-4-N. Anderson's approach is to initially train the 
network with a related, relatively easy-to-learn problem, 
and then gradually replace the training set with harder 
problems, until the network learns the problem he 
originally intended to solve. In several cases, this method 
allowed us to train networks that otherwise fail to train.  

4.3.1 16-M-16 Encoder Problem 

A 16-M-16 problem is to compress a signal of 16 values 
into one of M values. This network is useful for feature 
extraction. Each network consists of 16 units in both the 
input layer and output layer, and a hidden layer of M (6 to 
11) units. In this experiment, the input patterns are equal 
to the target patterns such as the following sample pattern 
formats: Note, the size of gab between two ones ≥6 (as 
shown in table 3).  

TABLE 3: Four of the forty training patterns for 16-M-16 
network 

1  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0 

1  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0 

1  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0 

1  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0 

The following table shows the training process of the 
network 16-M-16, various values of M have been applied 
from 6 to 11. It is clear that the more number of units in 
the hidden layer, causes the network will be able to 
escape from local minima, so acceleration the training 
process. 

TABLE 4: Solve 16-M-16 Encoder using EVDBD with 
Training Wheel's technique 

         Μ 
η 11 10 9 8 7 6 
0.1 124 142 180 ∞ 210 327 
0.2 105 122 ∞ 168 202 226 
0.3 93 110 ∞ 120 95 121 
0.4 77 90 98 96 122 ∞ 
0.5 64 ∞ 83 95 ∞ 152 
0.6 61 61 62 72 94 ∞ 
0.7 57 52 54 ∞ 84 210 
0.8 53 51 57 56 74 95 
0.9 61 63 55 70 72 ∞ 

From the previous table it can notice that the best values 
achieved when a hidden layer size equals to 11. Meaning 
that the large hidden layer size helps to generalize and 
accelerate the training process.  

4.3.2 M-4-M Encoder Problem (Double dots)  

This experiment has tested M-4-M network to compress a 
signal of M vales into 4 values where M=7, 9, 10, 16, and 
28 [1]. Each network consists of M units in both the input 
layer and output layer, and a hidden layer of 4 units. In 
this experiment, the input patterns are equal to the target 
patterns such as the following sample pattern formats: 

TABLE 5: Five of the ten training patterns for 10-4-10 
network where gab size = 3 and block size =2 

 
This experiment has examined M-4-M through Training 
Wheel's technique. There are more than one architecture 
were used. Table 6 shows that there are many cases have 
been tested (for example, in the third column the 
architecture in this experiment is 9-4-9, the gap between 
each two ones is 2 and the size of each block is 1). 

TABLE 6: Solve M-4-M Encoder using EVDBD with 
Training Wheel's technique 

N 7 9 10 16 28 

Gap 1 2 3 5 10 

        Block Size    
      η 1 1 2 1 3 2 1 4 

0.1 56 180 44 110 96 1123 154 309 

0.2 54 182 33 87 67 1072 112 216 

0.3 49 112 21 81 63 682 93 203 

0.4 42 101 24 73 61 556 112 112 

0.5 31 95 27 66 54 442 105 105 

0.6 42 94 25 54 56 413 108 84 

0.7 43 84 27 71 54 277 106 82 

0.8 45 105 33 78 64 457 124 73 

0.9 57 121 38 90 91 545 170 85 

From the previous table, it can noticeable that the 
minimum number of epochs was when the architecture 
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10-4-10 and the value of the gap =3 and the block size is 
2 with learning rate equals to 0.3. In addition, the number 
of epochs with all learning rates in this case is less than all 
other cases. 

In addition, it can be realized that using a medium size of 
the hidden layer helps in accelerating the training process. 
Meaning that using a large size of the hidden layer may 
slow down the training process or may leads the network 
to overfitting or even falling into local minima [20]. 

To compare DBD and EVDBD, the best results using 
EVDBD have been taken from table 6, while the best 
results for the same experiment using DBD taken from 
[14]. Take into consideration that using the same 
parameters with the two algorithms. Table 7 shows this 
comparison. 

TABLE 7: Comparing between EVDBD and DBD to 
Solve M-4-M Encoder Problem with Training Wheel's 
technique 

M-4-M Gap Block DBD EVDBD 
7 1 1 366 33 
9 2 1 359 85 

2 450 22 
10 3 1 465 56 

3 331 56 
2 363 297 

16 5 1 464 96 
28 10 4 12859 76 

It can see from the previous table that there are great 
differences between EVDBD and DBD, which surely 
approaches towards the EVDBD with respect to the 
convergence time. In addition to that, the ability of the 
EVDBD to deal with large size of gap and block (e.g. 
using a gap=10, block =4 with the network architecture of 
28-4-28). 

4.4.   Optical Character Recognition (OCR) Problem 

In this experiment, five neural networks are developed 
and trained to recognize handwritten characters. Two 
algorithms were tested: DBD and EVDBD.  

4.4.1 48-8-4 Neural Network to Solve OCR 
Problem 

4.4.1.1  Methodology 

To study the performance of the EVDBD and DBD, the 
neural networks were applied on handwritten English 
character recognition. Binary images of the characters 
were represented with bipolar values [-1, 1], and given to 
the input layer[19]. As shown in figure 3, ten images are 
used in the training set an 8X6 binary image for the neural 
network with 48-8-4 architecture.  

 

     

FIGURE 3: The Training set of OCR (48-8-4 neural 
Network) 

Binary vectors of size 4 represent the output values.(e.g. 
character A is represented with zero (0000), while J is 
represented with 9 (1001)). Each character image is 
mapped to its corresponding binary code. To train the 
network for larger set of characters a large output vector 
can be used (as will be in sections 4.4.5.2 and 
4.4.5.3).The size of the hidden layer for this network is 8 
producing 48-8-4 network. Small values for the learning 
rates were used to avoid local minima, the value ranges 
from 0.1 to 0.4. In addition, several sets with different 
random initial weights between –0.5 to +0.5 were used in 
each training process with various values for the learning 
rate. The training processes were terminated when the 
MSE (Mean Square Error) is less than or equal to 
0.0001(for all the following experiments). 

4.4.1.2 Solve OCR problem (48-8-4) Using DBD and 
EVDBD: 

Table 8 shows training summary for the 48-8-4 neural 
network using the. 20 experiment runs of each learning 
rate were made with random initial weights setting over 
the interval [-0.5, 0.5].  

TABLE 8: Solve OCR problem (48-8-4) Using DBD and 
EVDBD  

η Algo. Max Min 

DBD 6900 5274 
0.1 EVDBD 423 380 

DBD 7710 2533 
0.2 EVDBD 327 195 

DBD 4028 1706 
0.3 EVDBD 355 145 

From the previous table, it can see the great difference 
between the two algorithms which greatly approaches 
towards EVDBD. Through the EVDBD a minimum 
number of the epochs reached to 145 while in DBD was 
1706 and that was with learning rate of 0.3.  

4.4.2    96-16-4 Neural Network to Solve OCR Problem 

In this experiment a larger network has been used by 
using a larger size for each image which each one of them 
represents one of the capital letters from A-J. Each 
character represents with 12 rows and 8 columns which 
means that the number of pixels which represent each 
character is 96; this number represents the size of the 
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input layer. 16 units were used to the size of the hidden 
layer, and the size of the output layer is 4 for all 
experiments. 

In this experiment, the network was trained several times 
through several learning rates as in table 9. The aim of 
this test is to compare the algorithms EVDBD and DBD 
through a network that has a larger architecture from 
those that were used in the previous section. 
 
TABLE 9: Solve OCR problem (96-16-4) Using DBD 
and EVDBD 

η DBD EVDBD 
0.1 83 472 
0.2 31 279 
0.3 25 144 
0.4 23 191 

From the previous table, it can see that EVDBD is still 
keeping its qualities in speeding up the training process 
especially with using a larger learning rate. The focus 
should always be through the number of epochs that gets 
from each algorithm. 

4.4.3 Solve OCR problem (400-L-4) Using DBD and 
EVDBD  

In this test, the architecture of the network was 400-L-4, 
where L=20, 40 and 60. The aim of this network is to 
recognize the characters from A-J. Each letter have been 
represented by 20 rows and 20 columns which makes the 
input layer size equals to 400. The aim of this test is to 
know the effect of the size of the input layer on the 
performance of the proposed algorithm EVDBD, and the 
effect of maximizing the hidden layer size on speeding up 
training using this algorithm. Note the learning rate that is 
used in the remaining experiments is equals to 0.1. The 
following table shows the results of this test . 

TABLE 10: Solve OCR problem (400-L-4) Using DBD 
and EVDBD 

              Algo. 
HLS 
 DBD EVDBD 

20 139 75 
40 111 51 
60 107 49 

HLS: refers to the Hidden Layer size. 

It is clear that the minimum number of epochs was when 
the size of hidden layer equals to 60 especially when use 
larger learning rate which indicates that maximizing the 
size of the hidden layer and the learning rate helps in 
speeding up the training process. The size of the hidden 
layer may be maximizing just to a certain size, that is 
because the network could not generalize(e.g. when used 
larger than 60 units for the hidden layer size). 

4.4.4.  Solve OCR problem (900-L-4) Using DBD and 
EVDBD  

This network is like other networks were built to 
recognize the characters from A-J. But here, each 
character have been represented by 30 rows and 30 
columns, which makes the size of the input layer equals to 
900 units. Various values for the size of hidden layer have 
been used such as 25, 50, 75 and 100 units. The training 
process for this network has given in table 11: 

TABLE 11: Solve OCR problem (900-L-4) Using DBD 
and EVDBD 

            Algo. 
HLS 
 

DBD EVDBD 
25 112 81 
50 67 45 
75 53 30 

100 55 31 

This experiment has also assured that EVDBD has the 
ability to generalize even with maximizing the input layer 
size. From table 11 it can notice that the hidden layer size 
maximized until reaches to a point where more 
maximization has no positive effect (may be overfitting). 
It even might expose the network to a prevention from 
generalize or memorization (for example, it can see from 
the previous table that the size of hidden layer equals to 
75 and 100 leads to the same performance 
approximately). 

4.4.5. Solve OCR Problem (10000-L-M neural 
network) 

From the previous experiments, different sizes have been 
examined for input layer, but in this test the size of the 
input layer has been maximized to be compatible with 
real problems. Each character has been represented with 
100 rows and 100 columns, so that the size of the input 
layer becomes very large which is 10000 units.  

4.4.5.1 Solve OCR problem (10000-L-4) Using DBD 
and EVDBD: 

This network has been constructed to recognize the 
characters from A-J with different sizes of hidden layer 
40, 50, and 60 units with many learning rates. The 
following table represents the results of this network: 

TABLE 12: Solve OCR problem (10000-L-4) Using DBD 
and EVDBD 

                Algo. 
HLS DBD EVDBD 

40 197 61 
50 164 50 
60 146 37 
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The row that represents the hidden layer size equals to 60 
is the best row but it should say that using hidden layer 
size greater than 60 will prevent the network from 
generalization. So using a medium hidden layer size is 
better for generalization and acceleration of the training 
process. 

4.4.5.2 Solve OCR problem (10000-L-5) Using DBD 
and EVDBD: 

The new thing about this experiment is maximizing the 
output layer and that is to help this network to recognize 
the characters from A-Z (for example, the target output 
for the character A is 00000, and for Z is 11001). The 
number of units (L) in the hidden layer was 30, 40, 50, 60, 
70 and 80 units. The following table summarizes the 
results of this experiment. The number of epochs that 
have been put in the table gave a better result from the 
five trails that have been got with each hidden layer. 

TABLE 13: Solve OCR problem (10000-L-5) Using DBD 
and EVDBD 

                Algo. 
HLS DBD EVDBD 

30 150 73 
40 114 71 
50 83 54 
60 80 37 
70 58 31 
80 54 29 

From the previous, it can notice that EVDBD could solve 
this problem too and through the different sizes of hidden 
layer. For this test and the previous tests using hidden 
layer size of 60 and 70 is better because it is close to the 
results of hidden layer size equals to 80, but it reduces 
from falling into local minima or overfitting. 

4.4.5.3 Solve OCR problem (10000-L-6) Using DBD 
and EVDBD: 

The aim of this network is recognizing a large number of 
symbols. The size of the output layer has been maximized 
to 6. So this network has the ability to recognize the 
capital letters from A-Z, small letters from a-z beside the 
digits from 0-9. According to the size of the hidden layer 
it was 80, 90 and 100 units as in the following table: 

TABLE 14: Solve OCR problem (10000-L-6) Using DBD 
and EVDBD  

                Algo. 
HLS DBD EVDBD 

80 72 61 
90 50 52 
100 31 25 

From the results of the previous table, the new result is 
that when the size of the training set (i.e. number of 

symbols) increases it becomes very important to use a 
larger size of the hidden layer. In addition, the required 
number of epochs becomes less. 

 
4. CONCLUSION 
 
This paper introduced a new algorithm EVDBD which has 
been proposed for the training of multilayer neural 
networks, the EVDBD is an enhanced version of the 
Delta-Bar-Delta algorithm. The study shows that EVDBD 
is beneficial in speeding up the training process. The 
experiments results confirmed these observations.  
 
The experimental results show that an EVDBD has the 
same features of the DBD except that the EVDBD 
minimizes the time of the training process. In addition, 
the result of this paper can be generalized to be applied on 
the multi-layer neural networks. 
   
FUTURE WORK  
 
Use the adaptive momentum strategies should be 
examined and their results should be compared to those 
produced by their counterparts. 
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